

حميدرضا اميرى

مثال ۵. فرض کنیم a یک عدد صحیح و مثبت باشد. در این صورت a نمی تواند، همزمان زوج و فرد باشد.

اثبات

فرضیات: الف) عدد a یک عدد صحیح و مثبت است. (مفروضات بدیهی: همهٔ خواص اعداد صحیح و اعمال آن ها میتواند مورد استفاده قرار گیرد.) نتیجه (حکم): ب) عدد a زوج است. پ) عدد a فرد است. پ) عدد محیح و مثبت مانند P-P-P. پ) عدد محیح و مثبت مانند P-T-P. پ) ا+T-P-P. پ) ا+T-P-P. پ) ا+T-P-P. پ) ا+T-P-P. پ) ا+T-P-P. پ) ا-T-P-P. پ) ا-T-P. (T-P-P

تمرينها

هر یک از احکام زیر را ثابت کنید: ۱. اگر $^{Y} = ^{X} e \cdot \le x e \cdot \le v$ ، آنگاه x = x. ۲. اگر یک تابع مانند f زوج و فرد باشد، آنگاه برای هر x در دامنهٔ تابع، $\cdot = (x)$. (تعریف تابعهای زوج و فرد را در موضوعهای مقدماتی کتاب مشاهده کنید.) ۳. اگر n یک مضرب صحیح و مثبت ۳ باشد، آنگاه n فرد است یا مضرب ۶ است. ۴. اگر x و y دو عدد حقیقی باشند، به طوری که $^{Y} = ^{Y} x$ ، آنگاه y = x یا y = x = y. ۵. اگر A و B دو زیرمجموعه از مجموعهای چون U باشند، تعریف می کنیم $\{B \neq a | A \in A | a \neq A\}$.

	لغات و اصطلاحات مهم
1. At the same time	بهطورهمزمان، در عین حال
2. Positive integer	عدد صحيح
3. Implicit hypothesis	مفروضات بديهي
4. Operations	اعمال
5. Assume	خاصيتها
6. Remainder	باقىماندە
7. Equality	تساوى
8. Difference	تفاضل
9. Contradict	تناقض
10. Subset	زيرمجموعه

EXAMPLE 5. Let *a* be a positive integer. Then *a* cannot be even and odd at the same time.

Proof

Hypothesis:

A: The number *a* is a positive integer. (Implicit hypothesis: All the properties of integer numbers and their operations can be used.)

Conclusion:

B: The number *a* is even. C: The number *a* is odd.

Assume that the number *a* is even and odd at the same time.

As a is even, it is a multiple of 2. Therefore, a=2p for some positive integer p.

As *a* is odd, it has a remainder of 1 when divided by 2. Therefore, a=2n+1 for some positive integer number n. Thus

2p = 2n+1. This implies that 2*p*-2*n*=1.

or

$$2(p-n)=1.$$

This equality states that 1 is a multiple of 2, because the number p-n is an integer (it is the difference of two integer numbers). This contradicts the properties of integer numbers. Therefore, the assumption that a can be even and odd at the same time is false.

EXERCISES

Prove the following statements.

1. If $x^2 = y^2$ and $x \ge 0$, $y \ge 0$, then x = y. 2. If a function *f* is even and odd, then f(x)=0for all x in the domain of the function.

(See the front material of the book for the definitions of even and odd functions.)

- 3. If *n* is a positive multiple of 3, then either *n* is odd or it is a multiple of 6.
- 4. If x and y are two real numbers such that $x^4 = y^4$, then either x = y or then x = -y.
- 5. Let A and B be two subsets of the same set U. Define

A-B={ $a \in A | a \notin B$ }.

If *A*-*B* is empty, then either *A* is empty or $A \subseteq B$.

ترجمه برای دانش آموز

EAMPLE 2. Let $f(x)=x/(x^2+1)$, and let y and z be two real numbers larger than 1. If f(y)=f(z), then y=z.

(This proves that the function f is one-to-one on the interval $(1, +\infty)$. See the front material of the book for the definition of one-to-one.) *Proof.* Because f(y)=f(z), it follows that

$$\frac{y}{y^2+1} = \frac{z}{z^2+1}$$

We can now multiply both sides of the equation by $(y^2+1)(z^2+1)$, which is a nonzero expression because $y^2 + 1 \neq 0$ and $z^2 + 1 \neq 0$. Therefore, we obtain

 $zy^2 + z = z^2y + y$,

which can be simplified as

(z-y)(1-yz)=0.

Thus, either z-y=0 or 1-yz=0.

The first equality implies that y=z. The second equality implies that $y_z=1$. This is not possible because y and z are two real numbers larger than 1. Therefore, the only possible conclusion is y=z.