(10. y M Migno T (解)

مثال ه. فرض كنيمa a يك عدد صحيح و مثبت باشد. در اين صورت a نمىتواند، همزمان زوج و فرد باشد.

	لغات و اصطلاحات مهم
1. At the same time	بهطورهمزمان، در عين حال
2. Positive integer	عدد صحيح
3. Implicit hypothesis	مفروضاتبديهى
4. Operations	اعمال
5. Assume	خاصيتها
6. Remainder	باقىمانده
7. Equality	تساوى
8. Difference	تفاضل
9. Contradict	تناقض
10. Subset	زيرمجموعه

EXAMPLE 5. Let a be a positive integer. Then a cannot be even and odd at the same time.

Proof
Hypothesis:
A: The number a is a positive integer.
(Implicit hypothesis: All the properties of integer numbers and their operations can be used.)
Conclusion:
B : The number a is even.
C : The number a is odd.

Assume that the number a is even and odd at the same time
As a is even, it is a multiple of 2. Therefore, $a=2 p$ for some positive integer p.

As a is odd, it has a remainder of 1 when divided by 2 . Therefore, $a=2 n+1$ for some positive integer number n. Thus

$$
2 p=2 n+1 .
$$

This implies that

$$
2 p-2 n=1 .
$$

or

$$
2(p-n)=1 .
$$

This equality states that 1 is a multiple of 2 , because the number $p-n$ is an integer (it is the difference of two integer numbers). This contradicts the properties of integer numbers. Therefore, the assumption that a can be even and odd at the same time is false.

EXERCISES

Prove the following statements.

1. If $x^{2}=y^{2}$ and $x \geq 0, y \geq 0$, then $x=y$.
2. If a function f is even and odd, then $f(x)=0$ for all x in the domain of the function.
(See the front material of the book for the definitions of even and odd functions.)
3. If n is a positive multiple of 3 , then either n is odd or it is a multiple of 6 .
4. If x and y are two real numbers such that $x^{4}=y^{4}$, then either $x=y$ or then $x=-y$.
5. Let A and B be two subsets of the same set U, Define

$$
A-B=\{a \in A \mid a \notin B\} .
$$

If $A-B$ is empty, then either A is empty or $A \subseteq B$.
تر جمه بر اى دانش آموز

EAMPLE 2. Let $f(x)=x /\left(x^{2}+1\right)$, and let y and z be two real numbers larger than 1 . If $f(y)=f(z)$, then $y=z$.
(This proves that the function f is one-to-one on the interval $(1,+\infty)$. See the front material of the book for the definition of one-to-one.) Proof. Because $f(y)=f(z)$, it follows that

$$
\frac{y}{y^{2}+1}=\frac{z}{z^{2}+1}
$$

We can now multiply both sides of the equation by $\left(y^{2}+1\right)\left(z^{2}+1\right)$. which is a nonzero expression because $y^{2}+1 \neq 0$ and $z^{2}+1 \neq 0$. Therefore, we obtain

$$
z y^{2}+z=z^{2} y+y,
$$

which can be simplified as

$$
(z-y)(1-y z)=0 .
$$

Thus, either $z-y=0$ or $1-y z=0$.
The first equality implies that $y=z$. The second equality implies that $y z=1$. This is not possible because y and z are two real numbers larger than 1 . Therefore, the only possible conclusion is $y=z$.

